Пищевые цепи и пищевые сети. Пример пищевой сети Составить свой пример пищевой сети

03.01.2024

Это совокупность пищевых цепей сообщества, взаимосвязанных между собой общими пищевыми звеньями.

капуста ^ гусеница ^ синица ^ ястреб ^ человек

Например: морковь ^ заяц ^ волк
Виды с широким спектром питания могут включаться в пищевые цепи на разных трофических уровнях. Только продуценты всегда занимают первый трофический уровень. Используя солнечную энергию и биогены, они образуют органическое вещество, которое содержит энергию в виде энер-гии химических связей. Это органическое вещество, или биомасса продуцентов, потребляется организмами второго трофического уровня. Однако не вся биомасса предыдущего уровня съедается организмами последующего уровня, потому
что исчезли бы ресурсы для развития экосистемы. При переходе от одного трофического уровня к другому происходит трансформация вещества и энергии. На каждом трофическом уровне пастбищной пищевой цепи не вся съеденная биомасса идет на образование биомассы организмов данного уровня. Значительная часть ее затрачивается на обеспечение жизнедеятельности организмов: дыхание, движение, размножение, поддержание температуры тела и т.д. Кроме того, не вся съеденная биомасса усваивается. Непереваренная часть ее в виде экскрементов попадает в окружающую среду. Процент усвояемости зависит от состава пищи и биологических особенностей организмов, он составляет от 12 до 75%. Основная часть ассимилированной биомассы расходуется на поддержание жизнедеятельности организмов и только сравнительно небольшая ее часть идет на построение тела и рост. Другими словами, большая часть вещества и энергии при переходе от одного трофического уровня к другому теряется, потому что к последующему потребителю попадает только та их часть, которая включилась в биомассу предыдущего трофического уровня. По подсчетам установлено, что теряется в среднем около 90%, и только 10% вещества и энергии переходит на каждом этапе пищевой цепи. Например:
Продуценты ^ консументы I ^ консументы II ^ кон- сументы III
1000 кДж ^ 100 кДж ^ 10 кДж ^ 1 кДж Эта закономерность была сформулирована как «закон 10%». Он гласит, что при переходе от одного звена к другому в пастбищной пищевой цепи передается лишь 10% вещества и энергии, а остальная часть расходуется предыдущим трофическим уровнем на поддержание жизнедеятельности. Если количество вещества или энергии на каждом трофическом уровне изобразить в виде диаграммы и расположить их друг над другом, то получится экологическая пирамида биомассы или энергии (рис. 13). Такая закономерность получила название «правило экологической пирамиды». Этому правилу подчиняется и численность организмов на трофических уровнях, поэтому можно построить экологическую пирамиду чисел (рис. 13).
Мальчик 1 Телята 4.5 Люцерна 2107



Пирамида энергии

Таким образом, запас вещества и энергии, накопленный растениями в пастбищных пищевых цепях, быстро расходуется (выедается), поэтому пищевые цепи не могут быть длинными. Обычно они включают 4-5 звеньев, но не более 10-ти. На каждом трофическом уровне пастбищной пищевой цепи образуется отмершее органическое вещество и экскременты - детрит, от которого начинаются детритные цепи, или цепи разложения. В наземных экосистемах процесс разложения детрита включает три этапа:
Этап механического разрушения и частичного превращения в сахариды. Он очень короткий - 3-4 года. Его осуществляют редуценты I порядка - макробиота (черви, личинки насекомых, землероющие млекопитающие и др.). На этом этапе потерь энергии практически не происходит.
Этап разрушения детрита до гуминовых кислот. Он продолжается 10-15 лет и пока слабо изучен. Его осуществляют редуценты II порядка - мезобиота (грибы, простейшие, микро-
организмы крупнее 0,1 мм). Гуминовые кислоты - это перегной, полуразрушенное органическое вещество, поэтому при их образовании происходит разрыв части химических связей и выделяется тепловая энергия, которая рассеивается в космическом пространстве.
3. Этап разрушения гуминовых кислот до неорганического вещества - биогенов. Он протекает очень медленно, особенно в нашей умеренной зоне (сотни и тысячи лет) и еще практически не изучен. Его осуществляют редуценты III порядка - микробиота (микроорганизмы меньше 0,1 мм). При разрушении гуминовых кислот происходит разрыв всех химических связей и выделяется большое количество тепловой энергии, которая теряется в космическом пространстве. Образующиеся в результате этого процесса биогены энергии не содержат, в дальнейшем они поглощаются продуцентами и опять вовлекаются в круговорот вещества.
Как видно из вышесказанного, на уровне редуцентов наблюдается задержка жизни, но так быть не должно. В почве есть запас гуминовых кислот, которые образовались очень давно, поэтому задержки жизни не происходит. В разных экосистемах скорость разрушения гуминовых кислот разная. Если она меньше, чем скорость их образования, то плодородие по-чвы повышается, если же наоборот, то оно снижается. Вот почему в умеренной зоне после разрушения биогеоценоза возможно длительное использование плодородия почвы. В тропиках плодородия почвы достаточно на 2-3 года, а затем она превращается в пустыню. Здесь разрушение гуминовых кислот идет быстро. Этому способствуют высокая температура, влажность и аэрация. В умеренной зоне в почве содержится до 55% углерода, а в тропиках - только до 25%. Вот почему нельзя вырубать тропические леса, чтобы предотвратить опустынивание планеты.
Таким образом, поток энергии, входящий в экосистему, далее разбивается как бы на два основных русла - пастбищное и детритное. В конце каждого из них энергия теряется безвозвратно, потому что растения в процессе фотосинтеза не могут использовать тепловую длинноволновую энергию.
Соотношение количества энергии, проходящей через пастбищные и детритные цепи, в разных типах экосистем разное. Потеря энергии в пищевых цепях может быть восполнена только за счет поступления новых порций. Это осуществляется за счет ассимиляции солнечной энергии растениями. Поэтому в экосистеме не может быть круговорота энергии, аналогично круговороту вещества. Экосистема функционирует только за счет направленного потока энергии - постоянного поступления ее в виде солнечного излучения, либо в виде готового органического вещества.

В экосистемах продуценты, консументы и редуценты объединены сложными процессами переноса веществ и энергии, которая заключена в пище, созданной преимущественно растениями.

Перенос потенциальной энергии пищи, созданной растениями, через ряд организмов путем поедания одних видов другими называется трофической (пищевой) цепью, а каждое ее звено называется трофическим уровнем.

Все организмы, пользующиеся одним типом пищи, принадлежат к одному трофическому уровню.

На рис.4. представлена схема трофической цепи.

Рис.4. Схема пищевой цепи.

Рис.4. Схема пищевой цепи.

Первый трофический уровень образуют продуценты (зеленые растения), которые аккумулируют солнечную энергию и создают органические вещества в процессе фотосинтеза.

При этом более половины энергии, запасенной в органических веществах, расходуется в процессах жизнедеятельности растений, превращаясь при этом в тепло и рассеиваясь в пространстве, а остальная часть поступает в пищевые цепи и может быть использована гетеротрофными организмами последующих трофических уровней при питании.

Второй трофический уровень образуют консументы 1-го порядка - это растительноядные организмы (фитофаги), которые питаются продуцентами.

Консументы первого порядка большую часть энергии, которая содержится в пище, расходуют на обеспечение своих жизненных процессов, а остальную часть энергии используют на построение собственного тела, преобразуя тем самым растительные ткани в животные.

Таким образом, консументы 1-го порядка осуществляют первый, принципиальный этап трансформации органического вещества, синтезированного продуцентами.

Первичные консументы могут служить источником питания для консументов 2-го порядка.

Третий трофический уровень образуют консументы 2-го порядка - это плотоядные организмы (зоофаги), которые питаются исключительно растительноядными организмами (фитофагами).

Консументы 2-го порядка осуществляют второй этап трансформации органического вещества в цепях питания.

Однако, химические вещества, из которых строятся ткани животных организмов, довольно однородны и поэтому трансформация органического вещества при переходе со второго трофического уровня консументов на третий не имеет столь принципиального характера, как при переходе с первого трофического уровня на второй, где происходит преобразование растительных тканей в животные.

Вторичные консументы могут служить источником питания для консументов 3-го порядка.

Четвертый трофический уровень образуют консументы 3-го порядка - это плотоядные животные, питающиеся только плотоядными организмами.

Последний уровень трофической цепи занимают редуценты (деструкторы и детритофаги).

Редуценты-деструкторы (бактерии, грибы, простейшие) в процессе своей жизнедеятельности разлагают органические остатки всех трофических уровней продуцентов и консументов до минеральных веществ, которые вновь возвращаются к продуцентам.

Все звенья трофической цепи взаимосвязаны и взаимозависимы.

Между ними от первого к последнему звену осуществляется передача веществ и энергии. Однако, необходимо отметить, что при передаче энергии с одного трофического уровня на другой происходит ее потеря. В результате цепь питания не может быть длинной и чаще всего состоит из 4-6 звеньев.

Однако, такие пищевые цепи в чистом виде в природе обычно не встречаются, поскольку каждый организм имеет несколько источников питания, т.е. пользуется несколькими типами пищи, и сам используется как продукт питания другими многочисленными организмами из одной и той же трофической цепи или даже из разных цепей питания.

Например:

    всеядные организмы потребляют в пищу как продуцентов, так и консументов, т.е. являются одновременно консументами первого, второго, а иногда и третьего порядка;

    комар, питающийся кровью человека и хищных животных, находится на очень высоком трофическом уровне. Но комарами питается болотное растение росянка, которая, таким образом, является и продуцентом и консументом высокого порядка.

Поэтому, практически любой организм, входящий в состав одной трофической цепи, одновременно может входить и в состав других трофических цепей.

Таким образом, трофические цепи могут многократно разветвляться и переплетаться, образуя сложные сети питания или трофические (пищевые) сети , в которых многочисленность и разнообразие пищевых связей выступает как важный механизм поддержания целостности и функциональной устойчивости экосистем.

На рис.5. показана упрощенная схема сети питания для наземной экосистемы.

Вмешательство человека в природные сообщества организмов путем намеренного или ненамеренного устранения какого-либо вида часто имеет непредсказуемые негативные последствия и приводит к нарушению устойчивости экосистем.

Рис.5. Схема трофической сети.

Существует два основных типа трофических цепей:

    пастбищные цепи (цепи выедания или или цепи потребления);

    детритные цепи (цепи разложения).

Пастбищные цепи (цепи выедания или цепи потребления) - это процессы синтеза и трансформации органических веществ в трофических цепях.

Пастбищные цепи начинаются с продуцентов. Живые растения поедаются фитофагами (консументами первого порядка), а сами фитофаги являются пищей для плотоядных животных (консументов второго порядка), которыми могут питаться консументы третьего порядка и т.д.

Примеры пастбищных цепей для наземных экосистем:

3 звена: осина → заяц → лиса; растение → овца → человек.

4 звена: растения → кузнечики → ящерицы → ястреб ;

нектар цветка растения → муха → насекомоядная птица →

хищная птица .

5 звеньев: растения → кузнечики → лягушки → змеи → орел.

Примеры пастбищных цепей для водных экосистем:→

3 звена: фитопланктон → зоопланктон → рыбы;

5 звеньев: фитопланктон → зоопланктон → рыбы → хищные рыбы →

хищные птицы.

Детритные цепи (цепи разложения) - это процессы поэтапной деструкции и минерализации органических веществ в трофических цепях.

Детритные цепи начинаются с поэтапного разрушения мертвого органического вещества детритофагами, которые последовательно сменяют друг друга в соответствии со специфичным типом питания.

На последних стадиях деструкционных процессов функционируют редуценты-деструкторы, минерализующие остатки органических соединений до простых неорганических веществ, которые вновь используются продуцентами.

Например, при разложении мертвой древесины последовательно сменяют друг друга: жуки → дятлы → муравьи и термиты → грибы-деструкторы.

Детритные цепи наиболее распространены в лесах, где большая часть (около 90%) ежегодного прироста биомассы растений не потребляется непосредственно растительноядными животными, а отмирает и попадает в эти цепи в виде листового опада, подвергаясь затем разложению и минерализации.

В водных экосистемах большая часть вещества и энергии включается в пастбищные цепи, а в наземных экосистемах наибольшее значение имеют детритные цепи.

Таким образом, на уровне консументов происходит разделение потока органического вещества по разным группам потребителей:

    живое органическое вещество следует по пастбищным цепям;

    мертвое органическое вещество идет по детритным цепям.

Перенос энергии пищи от его источника – автотрофов (растений) – через ряд организмов, происходящий путём поедания одних организмов другими, называется пищевой цепью .

При каждом очередном переносе большая часть потенциальной энергии (80÷90%) теряется, переходя в тепло. Поэтому чем короче пищевая цепь (чем ближе организм к её началу – солнечной энергии), тем больше количество энергии, доступной для популяции.

Пищевые цепи можно разделить на два основных типа: пастбищная цепь , которая начинается с зелёного растения и идёт далее к пасущимся растительноядным животным и к их хищникам, идетритная цепь , которая от мёртвого органического вещества идёт к микроорганизмам, а затем к детритофагам и к их хищникам. Пищевые цепи не изолированы одна от другой, а тесно переплетаются друг с другом, образуя так называемыепищевые сети .

Пастбищная

Солнечный Растительноядные Хищники

Детритная

Потребители детрита Хищники

Наиболее упрощенные пастбищная и детритная пищевые цепи объединены в пищевую сеть в виде Y-образной или двухканальной диаграммы потока энергии .

Величины тех частей энергии чистой продукции, которые текут по двум путям, различны в экосистемах разного типа и часто варьируют по сезонам или по годам в одной и той же экосистеме. На некоторых мелководьях и на интенсивно используемых пастбищах и в степях по пастбищной цепи может идти 50% и более чистой продукции. Напротив, прибрежные марши, океаны, леса, да и большинство природных экосистем, функционируют как детритные системы; в них 90% и более процентов автотрофной продукции потребляется гетеротрофами только после того, как листья, стебли и другие части растений отмирают, подвергаются «переработке», превращаясь в диспергированное или растворённое органическое вещество, поступающее в воду, донные осадки и почву. Такое отсроченное потребление увеличивает структурную сложность, а также накопительную и буферную ёмкость экосистем.

Тесная связь пастбищной и детритной пищевых цепей приводит к тому, что при изменении уровня энергетического воздействия извне на экосистему быстро происходит переключение потоков между каналами, что позволяет поддерживать устойчивость экосистем. Не вся пища, съеденная пасущимися животными, усваивается: часть её, например через фекалии, уходит в детритную цепь.

Степень влияния травоядных животных на сообщество зависит не только от количества ассимилированной ими энергии пищи, но и от скорости изъятия живых растений. Прямое изъятие травоядными животными или человеком более 30-50% годового прироста наземной растительности уменьшает способность экосистемы сопротивляться стрессу. Перевыпас скота был одной из причин упадка многих цивилизаций. «Недовыпас » также может оказаться вредным. Если прямое потребление живых растений совершенно отсутствует, то детрит может накапливаться быстрее, чем идёт его разложение микроорганизмами. Это замедляет круговорот минеральных веществ, и, кроме того, система может стать пожароопасной.

В сложных природных сообществах организмы, получающие свою энергию от Солнца через одинаковое число ступеней, считаются принадлежащими к одному трофическому уровню . Так, зелёные растения занимают первый трофический уровень (уровень продуцентов), травоядные – второй (уровень первичных консументов), первичные хищники, поедающие травоядных, – третий (уровень вторичных консументов), а вторичные хищники – четвёртый (уровень третичных консументов). Эта трофическая классификация относится к функциям, а не к видам как таковым. Популяция данного вида может занимать один или несколько трофических уровней, смотря по тому, какие источники энергии она использует. Поток энергии через трофический уровень равен общей ассимиляции (А ) на этом уровне, которая в свою очередь равна продукции (Р ) биомассы плюс дыхание (R ):

A =P +R .

При переносе энергии между трофическими уровнями часть потенциальной энергии теряется. Прежде всего, растение фиксирует лишь малую долю поступающей энергии солнечного света (около 1%). Поэтому число консументов (например, людей), которые могут прожить при данном выходе первичной продукции, сильно зависит от длины пищевой цепи; переход к каждому следующему звену в нашей традиционной сельскохозяйственной пищевой цепи уменьшает доступную энергию примерно на порядок величины (т.е. в 10 раз). Поэтому если в рационе увеличивается содержание мяса, то уменьшается число людей, которых можно прокормить.

Эффективность i-го трофического уровня принято оценивать, как отношение A i /A i-1 , гдеA i – ассимиляцияi -ым трофическим уровнем. Для первого (автотрофного) трофического уровня она составляет 1-5%, для последующих – 10-20%.

Может озадачить низкая эффективность природных экосистем в сравнении с высокими КПД электромоторов и других двигателей. Но на самом деле, долгоживущие, крупномасштабные экосистемы нельзя приравнивать в этом отношении к недолговечным механическим системам. Во-первых, в живых системах много «горючего» затрачивается на «ремонт» и самоподдержание, а при расчете КПД двигателей не учитываются амортизация и расходы энергии на ремонт. Во-вторых, в определенных условиях быстрый рост, который повышает потребление энергии, может иметь большее значение для выживания, чем максимальная эффективность использования энергии пищи или горючего.

Для экосистем важно понимать, что любое повышение их эффективности искусственным путём обернется увеличением затрат на ее поддержание. Всегда наступает такой предел, после которого выигрыш от роста эффективности сводится на нет ростом расходов, не говоря уже о том, что система может войти в опасное колебательное состояние, грозящее разрушением. Индустриализованные экосистемы, возможно, уже достигли такой стадии, когда увеличение расходов приводит к все меньшей отдаче.

Любой живой организм выбирает условия, наиболее благоприятные для его обитания и обеспечивающие его возможностью полноценно питаться. Лиса выбирает место проживания, где живет много зайцев. Лев селится поближе к стадам антилоп. Рыба-прилипала не только путешествует, прикрепившись к акуле, но и сотрапезничает с ней.

Растения, хотя и лишены возможности сознательно выбрать место обитания, но преимущественно произрастают тоже в наиболее комфортных для себя местах. Серую ольху часто сопровождает крапива, требовательная к азотному питанию. Дело в том, что ольха сожительствует с бактериями, обогащающими почву азотом.

Пищевая сеть - своеобразный симбиоз

Здесь мы сталкиваемся с определенным видом отношений. Речь идет о так называемом симбиозе. Это прямые отношения, при которых оба организма извлекают пользу. Их также называют пищевые сети и цепи. Оба термина имеют похожее значение.

Чем отличаются друг от друга пищевая цепь и пищевая сеть? Отдельные группы организмов (грибы, растения, бактерии, звери) постоянно обмениваются между собой определенными веществами и энергией. Данный процесс называется пищевой цепью. Обмен между группами осуществляется во время поедания одних другими. Процесс взаимодействия между подобными цепями называется пищевой сетью.

Как организмы взаимосвязаны

Известно, что бобовые растения (клевер, мышиный горошек, караганы) сожительствуют с клубненьковыми бактериями, переводящими азот в формы, которые усваиваются растениями. В свою очередь бактерии получают от растений необходимые им органические вещества.

Многие из описанных отношений носят специфический характер. Однако в каждом биоценозе существуют отношения, в которых принимает участие каждая популяция. Это пищевые или трофические (трофос - пища) отношения.

Примеры пищевых сетей и цепей:

Во всех случаях организм, питающийся другими, извлекает одностороннюю пользу. Участвуя в процессе питания, все особи популяции обеспечивают себя необходимой для их жизнедеятельности энергией и разнообразными веществами. Популяция, служащая объектом питания, испытывает отрицательное воздействие со стороны пожирающих ее хищников.

Аутотрофы и гетеротрофы

Вспомним, что по способам питания организмы делятся на две группы.

Аутотрофные (аутос - сам) организмы живут за счет неорганического источника углеводорода. В данную группу входят растения.

Гетеротрофные (гетерос - другой) организмы живут за счет органического источника углеводорода. В эту группу входят грибы, бактерии. Если автотрофы независимы от иных организмов в источнике углерода и энергии, то гетеротрофы в этом отношении полностью зависят от растений.

Конкурентные отношения между группами

Взаимоотношения, приводящие к угнетению одного из партнеров, не обязательно связаны отношениями питания. Многие сорняки выделяют метаболиты, задерживающие рост растений. Одуванчик, пырей ползучий, василек угнетающе действуют на овес, рожь и другие культивируемые злаки.

В каждом биоценозе живут популяции многих видов, и отношения между ними многообразны. Можно сказать, что популяция ограничена в своих возможностях этими отношениями и должна найти присущее только ей место.

Уровень обеспеченности места обитания экологическими ресурсами определяет возможность существования многих ниш. От этого зависит и число видовых популяций, образующих биоценоз. В условиях благоприятного климата степей формируются биоценозы, состоящие из сотен видов, а в тропическом климате леса - из тысячи видов организмов. Пустынные биоценозы в жарком климате насчитывают несколько десятков видов.

Столь же изменчиво и пространственное распределение популяций. Тропические леса многоярусны, и живые организмы заполняют весь объем пространства. В пустынях биоценозы просты по структуре, и популяции малочисленны. Таким образом видно, что совместная жизнь организмов в биоценозах необыкновенно сложна. И все-таки растения и звери, грибы и бактерии объединяются в биоценозы и существуют только в их составе. Каковы же причины этого?

Самой главной из них является потребность живых организмов в питании, в трофической зависимости друг от друга.

К числу важнейших взаимоотношений между организмами относятся пищевые. Можно проследить бесчисленные пути движения вещества в экосистеме, при которых один организм поедается другим, тот - третьим и т. д. Ряд таких звеньев называется пищевой цепью. Пищевые цепи переплетаются и образуют пищевую (трофическую) сеть.

Пищевые цепи разделяют на два типа. Один тип пищевой цепи начинается с растений и идет к растительноядным животным и далее к хищникам - это цепь выедания (пастбищная).

Относительно простая и короткая пищевая цепь:
трава → кролик → лисица

(продуцент) (консумент (консумент

I порядка) II порядка)

Другой тип начинается от растительных и животных остатков к мелким животным и микроорганизмам, а затем к хищникам - эта цепь разложения (детритная).

Итак, все пищевые цепи начинаются с продуцентов. Без непрерывного образования ими органического вещества экосистема быстро съела бы сама себя и прекратила сущест­вование.

Пищевые связи можно уподобить потоку питательных веществ и энергии от одного трофического уровня к другому.

Общую массу организмов (их биомассу) на каждом трофи­ческом уровне можно измерить путем сбора или отлова и последующего взвешивания соответствующих выборок животных и растений. На каждом трофическом уровне биомасса на 90-99% меньше, чем на предыдущем. Допустим биомасса продуцентов на участке луга 0,4 га составляет 10 т, тогда биомасса фитофагов на той же площади будет не более 1000 кг. Пищевые цепи в природе обычно включают 3-4 звена, существование большего числа трофических уровней невоз­можно из-за быстрого приближения биомассы к нулю.

Большая часть получаемой энергии (80-90%) используется организмами на построение тела и поддержание жизне­деятельности. На каждом трофическом уровне число особей прогрессивно уменьшается. Эта закономерность носит название экологической пирамиды . Экологическая пирамида это отражает число особей на каждом этапе пищевой цепи или количество биомассы, или количество энергии. Эти величины имеют одинаковую направленность. С каждым звеном в цепи организмы становятся крупнее, они медленнее размно­жаются, их число уменьшается.

Разные биогеоценозы отличаются своей продуктивностью, скоростью потребления первичной продукции, а также разнообразными цепями питания. Однако, для всех цепей питания свойственны определенные закономерности, касаю­щиеся соотношения расходуемой и запасаемой продукции, т.е. биомассы с заключенной в ней энергии на каждом из трофических уровней. Эти закономерности получили назва­ние «правила экологической пирамиды». Различают разные типы экологических пирамид, в зависимости от того, какой показатель положен в ее основу. Так, пирамида биомассы отображает количественные закономерности передачи по цепи питания массы органического вещества. Пирамида энергии отображает соответствующие закономерности передачи энергии от одного звена цепи питания к другому. Разработана и пирамида чисел, отображающая количество особей на каждом из трофических уровней цепи питания.

© nvlz.ru, 2024
Заговоры. Амулеты. Обереги. Магия. Нумерология. Таро